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Abstract: Rotationally inelastic scattering of rare gas atoms and oriented NO molecules exhibits a
remarkable alternation in the sign of steric asymmetry between even and odd changes in rotational quantum
number. This effect has also been found in full quantum-mechanical scattering calculations. However, until
now no physical picture has been given for the alternation. In this work, a newly developed quasi-quantum
treatment (QQT) provides the first demonstration that quantum interferences between different orientations
of the repulsive potential (that are present in the oriented wave function) are the source of this alternation.
Further, from application of the treatment to collisions of nonoriented molecules, a previously unrecognized
propensity rule is derived. The angular dependence of the cross sections for excitation to neighboring
rotational states with the same parity is shown to be similar, except for a prefactor. Experimental results
are presented to support this rule. Unlike conventional quantum-mechanical (or semiclassical) treatments,
QQT requires no summation over the orbital angular momentum quantum number l or integration over the
impact parameter b. This eliminates the need to solve large sets of coupled differential equations that
couple l and rotational state channels among which interference can occur. The QQT provides a physical
interpretation of the scattering amplitude that can be represented by a Legendre moment. Application of
the QQT on a simple hard-shell potential leads to near-quantitative agreement with experimental
observations.

1. Introduction

Inelastic scattering of open-shell molecules provides detailed
information on collision-induced energy transfer, necessary for
understanding fundamental processes in chemical reactions.1,2

It has been a long-standing goal in molecular sciences to steer
chemical reactions, and for this it is a prerequisite to understand
and predict the outcome of a reactive encounter. One way to
achieve this goal is to exploit nature’s preference for direction-
ality and to control (steer) a reaction by orienting molecules
before they collide and eventually react.

Measurements of rotationally inelastic scattering of rare gases
with oriented NO moleculess i.e., N-end or O-end collisionss
have shown a large dependence on the initial orientation.3-8

This dependence can be expressed by the molecular steric
asymmetry ratio (S):

in which σR-NO and σR-ON denote the cross sections for
rotational energy transfer from the initial (i) state to the final
(f) state when the rare gas atom R impinges onto the N-end or
the O-end, respectively.

In experiments described in refs 3-6, a hexapole has been
used to state-select NO in the upper component (ε ) -1) of
theΛ-doublet of the2Π1/2 rotational ground state (j ) 1/2), where
ε is the symmetry index (ε ) -1, 1) andj the rotational angular
momentum quantum number. The NO molecules are subse-
quently oriented in a homogeneous electrostatic field. When a
beam of Ar or He crosses the beam of oriented NO, collisions
induce rotational excitation of the NO molecules from the
rovibrational ground state to higher rotational levels (j ) 1/2, Ωh
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) 1/2, ε f j′, Ωh ′, ε′). Ω is the projection of the electronic angular
momentum on the molecular axis, andΩh is the absolute value
of this projection. Laser-induced fluorescence (LIF) was used
to measure the ratio of inelastic collision cross sections in the
two orientations in these experiments.3,4,6

Until now, no clear physical explanation could be given for
the observed dependence ofSiff on the final rotational state of
the NO molecule: collisions with an odd change in rotational
quantum number∆j ) j′ - j have a strong preference for the
N-end, whereas final rotational states with even∆j result mostly
from O-end collisions. A full quantum treatment (using HIBRI-
DON6,8,9) yields a fair agreement with the observed orientation
dependence of the integral cross section but provides no
understanding of the undulatory dependence ofS on ∆j.10 In
conventional scattering calculations, the desired cross sections
are obtained from multiple summations over products of
T-matrix elements and provide no intuitive picture of the
underlying collision propensity. Theoretical exact close-coupling
(CC) calculations and experimental results are presented in
Figure 1 to illustrate the dependence ofS on ∆j.

Alexander and Stolte8 showed that the undulatory behavior
of S is insensitive to the angular dependence of the long-range
part of the Ar-NO potential. Its most prominent features are
governed by the anisotropy of the repulsive part of the potential,
to which S is very sensitive. However, Alexander and Stolte8

did not succeed in establishing an explanation for the observed
alternation ofSiff as a function of∆j ) j′ - j, nor to provide
a clear link between this behavior and the shape of the
anisotropic potential. In this paper we will explain the observed
steric effects by introducing a quasi-quantum treatment (QQT)
of the collision problem. The alternation between N-end and
O-end preference is demonstrated in this work to correspond
to a quantum interference phenomenon between scattering
events from different molecular orientations.

The conventional exact CC solution of the scattering problem
of a rare gas atom R and a heteronuclear rigid diatomic (NO)
requires the expansion of the incoming plane waveeikZ into an
infinite sum of Legendre polynomialsPl(cosθ), whereθ is the
scattering angle. EachPl(cosθ) is multiplied by an incoming
and outgoing spherical wavee(i(kR-lπ/2)/(kR) to yield the proper
plane wave. The absolute value of the position vector is written
as R and the orbital quantum number asl. The incoming
wavenumberk is given by

The semiclassical impact parameterb (see Figure 2) is related
to the orbital angular momentum quantum numberl as

The quantum numberl couples with the NO rotational quantum
numberj to yield the total angular momentum quantum number
J. Both J and the overall parity of the total wave function are
conserved by the scattering Hamiltonian. To solve the He-NO
inelastic scattering problem atEtr ≈ 500 cm-1, the maximum
value ofJ becomes as large as 120.5.12,13 At each value ofJ,
one has to solve a large set of coupled differential equations
that contain all relevant scattering channelsj, l, Ωh , andε that
influence the outcome of the scattering process. In the example
of He-NO, the number of coupled differential equations that
need to be solved numerically is typically as large as 1300 at a
single value ofJ and parity.12 State-of-the-art computational
possibilities still exclude exact calculations on molecule-
molecule scattering, for which there are many more channels.
An exception is the case of low collision energies or large
splitting between the rotational states (H2-like molecules).
Conventional quantum treatments provide good qualitative
results, but these elaborate numerical methods yield little insight
into the actual physics behind phenomena and their behavior
under different circumstances. Calculation times are often too
long to adjust the input parameters and learn the behavior of
the system as a function of these parameters. To overcome
theoretical limitations, a large number of approximative methods
to solve inelastic scattering problems have been developed since
the 1960s.14 Among these, the semiclassical version of the
infinite order sudden (IOS) approximation has turned out to be
particularly useful, as it facilitates rapid calculation.15-18

Generally speaking, there are two types of sudden ap-
proximation. In the first one, the molecular axis is assumed to
remain fixed in space, and the scattering paths are fully
determined by the isotropic part of the potential. A rotational
transition probability is treated as a time-dependent perturbation
resulting from the anisotropic part of the potential. The
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Figure 1. Dependence of the observed and theoretical steric asymmetry
ratios on the rotational excitation∆j ) j′ - j with Ωh ′ ) 1/2, ε′ ) -1,
plotted for He colliding with NO atEtr ) 514 cm-1 (top)6 and for Ar with
No atEtr ) 475 cm-1 (bottom).5 If collisions onto the N-end have a larger
cross section for excitation to a certain rotational state,S is positive, and
vice versa. The experimental steric asymmetrySAhas been multiplied by
-1 to match the plotted theoretical resultSiff.6 There still is an unresolved
sign discrepancy between theory and experiment, as discussed in detail in
refs 7 and 11.

k ≡ 1
px 2Etr

(mNO + mR)/(mNOmR)
(2)

b ≈ l + 1/2
k

(3)
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exponential form of theS-matrix is not approximated, but the
resulting phase shifts are from a first-order approximation of
the anisotropy of the potential. The angle between the specified
molecular axis and the position vectorR between the centers
of mass of the atom and molecule is the main collision
variable.19-21

Following Curtiss,22 Pack23 and McGuire and Kouri24 de-
scribed collisions of atoms and diatomics in terms of body fixed
or rotating coordinate frames. In this second type of sudden
approximation, the molecular axisr is assumed to be fixed in
respect toR and not in space (R̂‚r̂ ≡ cosγR). The centrifugal
term in the Schro¨dinger equation is simplified by approximating
lh ) l andl′ ) lh (with l andl′ the initial and final orbital angular
momentum), which drastically reduces the number of coupled
equations. This decoupling of the centrifugal barrier is also
referred to as the “centrifugal sudden approximation”. It leads
to a phase shift calculation that is of infinite order in the
anisotropy of the potential for each orientation angleγ of the
molecule. When the energy of the rotational states is taken into
account, one refers to this method as the “coupled states” (CS)
approximation. When this energy is ignored, one speaks about
the “infinite order sudden” (IOS) approximation.

Today, the IOS approximation is often applied when one is
prevented from carrying out numerically demanding close-
coupling calculations for practical reasons. The IOS and CS
approximations usually yield satisfactory results in the calcula-
tion of m, m′ degeneracy-averaged collision cross sections, but
they are well known to err in predicting them, m′ or steric
dependence of the inelastic collision cross section (m and m′
are the projections of the total angular momentumj on a space-
fixed axis). This shortcoming can be alleviated by assuming a
hard-shell-like “point contact interaction” (PCI) at the turning
point.25,26Khare, Kouri, and Hoffman27,28subsequently showed
explicitly that there is a propensity for preservingjz when using
an apse (geometric or kinematic) as a quantization axis. The
two apses coincide for elastic collisions and point about parallel
to R at the turning point in the case of a near-isotropic (near-
spherical) potential. The kinematic apse (KA) direction is that
along which momentum is transferred in the hard-shell ap-
proximation. In general, the kinematic apse is∆j dependent
while the geometric apse is not. It was shown that one can obtain

reasonable differential cross sections quantized in the space-
fixed frame by calculating and transforming only the∆m ) 0
scattering amplitude from the KA frame for a givenj f j′
transition.28,29

A distinctive quasi-quantum treatment (QQT) is presented
in the current study, where thel, l′, andJ quantum numbers are
replaced by angular variables that provide a direct connection
between the incoming and outgoing states and momenta. The
present work builds on pioneering work of Hoffman,30 who
developed a classical kinetic theory for a mixture of dilute gases
of rigid convex molecules. Molecular orientation variables, not
impact parameters, were used to evaluate the collision integrals.
Evans and co-workers31,32 succeeded in extending Hoffman’s
angular parametrization to the calculation of the classical
bimolecular rate constant, the energy-dependent reaction cross
section, and the steric dependence of the differential cross
sections for general diatom-diatom collisions. In the present
study, we will exploit thel, l′, J replacement by angular variables
to gain understanding and to calculate differential cross sections
and steric asymmetries for scattering on anisotropic (hetero-
nuclear) potentials. The straightforward expressions derived in
this way provide an intuitive basis for understanding the source
of the observed steric asymmetry.

This paper is organized in six sections and Supporting
Information. Section 2 describes the main ideas behind the QQT
and applies it to both fully state-selected, nonoriented molecules
(section 2A) and oriented molecules (section 2B). A previously
unrecognized propensity rule for the differential cross section
follows from this treatment. In section 3, a hard-shell ap-
proximation is introduced to obtain the molecule-fixed scattering
amplitude. This scattering amplitude, which contains the phase
shift, is necessary in order to obtain quantitative results from
the QQT. The quantitative QQT results are discussed in section
4 and compared to experimental results. Some conclusions and
a future outlook are given in section 5. In the Supporting
Information, a short discussion is given concerning the impact
the QQT has on the discrepancy in the sign of the steric
asymmetry ratio.7,11This discussion directly relates to our results
but is not the central focus of the present study.

2. Quasi-Quantum Treatment

The QQT aims at the simplification and approximation of
exact quantum treatments. It presents an intuitive basis for
understanding the physics behind the steric asymmetry ands
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Figure 2. All orientations are present in the oriented wave function. Constructive and destructive interference between these waves will occur, dependent
on the difference in path length. The potential can cause scattering under a certain angle for many different impact parameters. Note that for a hard shell as
drawn here, the kinematic apseâ coincides with the surface normaln̂.
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more generallys the relationship between inelastic collisions
and the anisotropy of the intermolecular potential.

For scattering trajectories (rays) to interfere, the trajectories
from a single initial state need to be scattered under an identical
angle and into the same final molecular state. The impact
parameterb gives the distance between a straight line along
the trajectory of the incoming particle long before collision and
the (center-of-mass) origin of the potential (see Figure 2). The
orbital angular momentum before collision (with quantum
numberl) is fixed byk and the impact parameterb. Tradition-
ally, to calculate differential cross sections, a summation over
l is made that in the classical limit can be replaced by integration
overb ≈ l/k (for example, see ref 15). For elastic (atom-atom)
scattering on a Lennard-Jones type of potential, there are only
three trajectories with different impact parameters that lead to
the same scattering angle33 and thus interfere. One of the three
trajectories is mostly caused by the repulsive part of the
potential, and the other two are due to the attractive part.33

In the case of an anisotropic potential, even when neglecting
the attractive part, the repulsive part of the potential allows
scattering into a certain angle for a range of impact parameters.
This is demonstrated in Figure 2 using a hard egg-shaped
potential. Solving this scattering problem numerically involves
a large set of coupled (j, l, ε, j′, l′, ε′) differential equations at
each value ofJ, which makes these treatments time-consum-
ing.14,34Calculating steric asymmetries for the He-NO collision
system with current technology takes a set of several parallel
processors several days.12

Approximations are introduced to reduce the size of the
calculations. The projectionma of the total angular momentum
j on an apseâ is approximately conserved during the collision,
when the repulsive part of the potential dominates (in the sudden
approximation). Apse quantization was proposed and demon-
strated to be a feasible approximation by Khare et al.27,28,35Later,
Meyer et al. showed experimentally that the apse approximation
yields good quantitative results for (among others) He-NO
collisions36 and Ne-NO collisions.37 In this work, the kinematic
apse will be used whichs in contrast to the geometric apses
relies on the final rotational state. The kinematic apse is defined
as27

The spherical angles which define the direction of the kinematic
apse in the collision frame (Ẑ ≡ k̂) are defined asâ andR. The
orientation of the molecular axis with respect to the kinematic
apse is given by the spherical anglesγa andφa.

In the QQT, the commonly used sum overl (or integral over
the impact parameterb) is replaced by an integral over the apse
anglesâ andR. The scattering angleϑ is determined fully by
the angleâ of the kinematic apse with the incoming momentum
and by the final rotational state. When one integrates overb,
scattering into the same angle and thus interfering contributions
originate from many values ofb (see Figure 2), making the
integral cumbersome to evaluate. Figure 3 schematically shows

the scattering angle of the outgoing momentum for different
final rotational states at asingledirection of the kinematic apse.
Note that1/2π e â e π for scattering withk′ e k. No interfering
contributions from different apse orientations occur, as there is
a direct relationship between apse angle and scattering angle.

To find the relationship between the scattering angle (ϑ), the
incoming momentum (k), and the angle between the apse and
incoming momentum (â), the energy of each rotational level
of the NO moleculeE(j) has to be known. The amount of kinetic
energy that is converted into rotation is given by

whereµ is the reduced mass. The relationship betweenϑ and
â can be written explicitly as

In the experiments described in refs 3, 4, 6, and 13, the
molecules are prepared in the upper component of theΛ-doublet
of the rotational ground state (j ) 1/2, Ωh ) 1/2, ε ) -1). In
collisions with rare gas atoms, the NO molecules are excited to
higher rotational states (j′, Ωh ′, ε′). The spin-orbit constantA0

and the rotational constantB0 used to calculate the rotational
energy of a NO molecule in theν ) 0, X2Π state areA0 )
123.13 cm-1 andB0 ) 1.6961 cm-1.38

In the current treatment, the attractive part of the rare gas-
NO interaction will be neglected; the maximum well depth for
He-NO and Ar-NO (25 and 116 cm-1, respectively39,40) is
much smaller than the kinetic energy, compared to a collision
energy of∼500 cm-1. Only spin-orbit-conservingΩ′ ) Ω
transitions are considered. Spin-orbit-changing transitions are
expected to be governed by the difference potential energy
surface (PES)Vdiff ,8 which is not included in the present
treatment.

The first goal is to calculate the state-to-state differential cross
section, dσ/dω, which iss for a j, m, Ω f j′, m′, Ω′ transitions

related to the dimensionless scattering amplitude by
(33) Pauly, H.; Toennies, J. P.Neutral-Neutral Interactions; Academic Press:

New York, 1968; Vol. 7, Part A, p 227.
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âk ) k′ - k
|k′ - k| (4)

Figure 3. Part of the incoming momentumk is transformed into rotation.
The orientation of the apse (â) and the translational energy loss due to
rotational excitation∆j fixes the scattering angle.

E(j′) ) 1
2µ

(|k - k′|)2 (5)

ϑ ) â - arctan( k sin â

k|cosâ| - 1
p
x2µE(j′)) (6)
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The scattering amplitude is defined as the coefficient of the
outgoing wave in

In ref 41, it was shown that eq 2 is a proper asymptotic solution
of the Schro¨dinger equation. Integration of the differential cross
section over dω ) sinϑ dϑ dæ provides the total cross section
σj,m,Ωfj′,m′,Ω.

The conventional scattering amplitudefj,m,Ωfj′,m′,Ω(ϑ) can be
expressedinanewlyintroducedscatteringamplitudegj,m,Ωfj′,m′,Ω(â).
The azimuthal anglesR and æ are redundant because of
cylindrical symmetry; noteR ) æ. The scattering amplitudes
are related via a Jacobian:

Note that eq 9 does not specify the choice of the quantization
axis. Recall that the projection of the total angular momentum
on the apse (ma) is (approximately) conserved during the
scattering process (m′a ) ma). Includingma conservation in the
calculation leads to an enormous simplification. The scattering
amplitude in the apse frame (where the apseâk serves also as
the quantization axis) is obtained by sandwiching a molecule-
fixed scattering amplitude between the initial and final wave
functions in the apse frame. An analogous equations although
not in the apse frames can be found as eq 40 in ref 26.

For now we will proceed without quantifying the molecule-
fixed scattering amplitudegjfj′(γa;â) that connects the incoming
and outgoing wave functions and carries their phase shifts.C(â)
is a normalization factor that is discussed in detail later (see eq
18). The angleγa of the molecular axisr with the apseâk is
assumed to be fixed during the collision. In section 3, a hard-
shell potential will be used to approximategjfj′(γa;â), but there
is no restriction to such a potential. The absolute value of the
molecule-fixed scattering amplitude is taken as the square root
of the apse-dependent classical differential cross section, dσ/
dωa ≡ dσ/sin â dâ dR, which is independent of the final
rotational state.

The integration of eq 10 contains the product of the initial
and (complex conjugate of) the final wave functions. The

rotational wave function can be expressed as42

The product of the wave functions that appears in the integral
of eq 10 cans after using eq 3.116 of ref 42s be contracted
to

Here,maΩ denotes the absolute value of the productmaΩ. We
apply this result first to fully state-selected molecules (as in ref
13) and after that to oriented molecules.

A. State-Selected Molecules.The pure parity wave function
for an NO molecule in the apse frame (neglecting Hund caseb
mixing) can be written as

The parity of a wave function is defined by its behavior under
parity transformation (inversion), which acts as a unitary
operatorP on a wave functionψ:

The total parityp of a rotational state (eigenvalue ofP) is
provided by Brown et al.:43

Using the result in eq 13, the differential cross section for
scattering ofj ) 1/2, mj a ) 1/2, Ωh ) 1/2, ε f j′, mj a ) 1/2, Ωh )
1/2, ε′ is given by

with

To enhance the readability, subscripts indicating the conserved
quantum numbersma andΩh are suppressed.

The factorC(â) takes care of current density conservation
along the kinematic apse, which lies along the direction of
momentum transfer. The total differential cross section with
respect to the apse (summed over all rotational states) for
inelastic scattering has to be the same as its classical counter-
part:

(41) Lester, W. A.Methods in Computational Physics; Academic Press: New
York, 1971; Vol. 10.

(42) Zare, R. N.Angular Momentum: Understanding spatial aspects in chemisty
and physics; John Wiley & Sons: New York, 1988.

(43) Brown, J. M.; Hougen, J. T.; Huber, K. P.; Johns, J. W. C.; Kopp, I.;
LeFebvre-Brion, H.; Merer, A. J.; Ramsay, D. A.; Rostas, J.; Zare, R. N.
J. Mol. Spectrosc.1975, 55, 500.

Ψj,ma,Ω
) x2j + 1

4π
Dma,Ω

j/ (φa,γa,0)

) (-1)ma-Ωx2j + 1
4π

D-ma,-Ω
j (φa,γa,0) (12)

Ψj′,ma,Ω
/ Ψj)1/2,ma,Ω

) 1
4πxj′ + 1/2[Pj′-1/2(cosγa) +

maΩ

maΩ
Pj′+1/2(cosγa)] (13)

|j,ma,Ωh ,ε〉 ) 1

x2
[|j,ma,Ωh 〉 + ε|j,ma,-Ωh 〉] (14)

Pψ(r) ) ψ(-r) ) pψ(r) (15)

p ) (-1)j-ε/2 (16)

dσj)1/2,εfj′,ε′

dω
) C(â)2

j′ + 1/2

4k2

sin â
sinϑ|∂â

∂ϑ|| gj′-εε′/2(â)|2 (17)

gn(â) ) ∫-1

1
gjfj′(γa;â)Pn(cosγa)d cos(γa)

dσj,m,Ωfj′,m′,Ω′

dω
) 1

k2
|fj,m,Ωfj′,m′,Ω(ϑ,æ)|2 (7)

Ψ ∝ Ψj,m,Ωeik·R + ∑
j′,m′

Ψj′,m′,Ω fj,m,Ωfj′,m′,Ω(ϑ,æ)
ieik′R

xkk′R
(8)

fj,m,Ωfj′,m′,Ω(ϑ) ) xsin â
sinϑ|∂â

∂ϑ| gj,m,Ωfj′,m′,Ω(â) (9)

gj,ma,Ωfj′,ma,Ω
(â) ) C(â)〈j′,ma,Ω|gjfj'(γa;â)|j,ma,Ω〉

) C(â)∫0

π∫0

2π
Ψj′,ma,Ω

/ gjfj′(γa;â) Ψj,ma,Ω

sin γa dφa dγa (10)

|gjfj'(γa;â)| ) kx ∂
2σ(γa)

|sin(â) ∂â|∂R
(11)
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with

Recall that

In the case ofj ) 1/2, eq 19 can be simplified as

The effect of the weakj′ dependence of the phase shift in
gjfj′(γa;â) for neighboring j′ values is suppressed for the
remainder of section 2, andgjfj′(γa;â) is abbreviated asg(γa;â).
In eq 17, it can be seen that the differential cross sections for
transitions fromj ) 1/2, ε ) -1 to two neighboring rotational
states with the same parity (for example,j′ ) 7/2, ε′ ) 1 andj′
) 9/2, ε′ ) -1) are similar, except for a different prefactor (j′
+ 1/2). This propensity rule immediately follows from eq 17:

et cetera.
The current treatment explains the surprising observation that

differential cross sections come in “parity pairs”, as seen in ion
imaging (velocity mapping) experiments.13 Ion images of
product angular distributions for spin-orbit-conserving He-
NO collisions are plotted in Figure 4. The top panel displays
images for parity-conserving transitions, while the lower panel
shows images for parity-breaking transitions. The “parity pairs”
for each final rotational state with identicalj′ - εε′/2 are grouped
in this figure and spaced from the other images. The intensity
in the ion images reflects the two-dimensional velocity distribu-
tion of the NO molecules after collision with a He atom. The
intensity on an outer ring roughly reflects the differential cross
section. For excitation to lowj′, the NO molecules are mostly
scattered in the forward direction, whereas for high final
rotational states, backward scattering is preferred. This can easily
be understood. Glancing collisionss where little translational
energy is transformed into rotational energys are forward
scattered, whereas head-on collisions allow for higher rotational
states and will show mostly backward scattering.

Although the ion images of Figure 4 clearly show the presence
of parity pairs, these images remain unable to give information
on the absolute value of the differential cross sections. To test
the predicted (prefactor) ratios between the differential cross
section within the pairs, these ratios are compared to those
obtained from quantum-mechanical coupled channel (HIBRI-
DON)9 calculations.13 The ratios An between HIBRIDON
differential cross sections within parity pairs are obtained with
a least-squares fit, where

is minimized. The resulting close-coupling ratios are compared
to those from the QQT prefactors in Table 1. For low final
rotational states, there exists a good qualitative agreement with
the ratios predicted from eq 17, although for the highest
rotational states the agreement is reduced. Until now, no
thorough explanation for the disagreement at high rotational
states has been available, but at this region the contribution of
spin-orbit-changing collisions becomes comparable to that of
spin-orbit-conserving collisions. Additionally, the angular
dependence of the differential cross sections turns out to be more
distinctive for largej′.13

The contra-intuitive result that the differential cross section
to the upperj′ component of each parity pairj′ - εε′/2 is larger
than that to the lowerj′ component opposes the “exponential
gap” model.2,44This rule of thumb predicts that the cross section
for a small “gap” (the change of translational energy during
collision) and thus a smallj′ is larger than that to a higher one.

Application of classicalS-matrix theory showed that collisions
between rare gas atoms and nearly homonuclear1Σ molecules
favor rotational transitions with∆j even.45 This propensity rule
cannot simply be extended to collisions of2Π molecules like
NO. Each rotationalj state carries both parities in the two
components of theΛ-doublet. In this work, as well as in that
by Drabbels et al.,46 the preference of∆j for conservation or
breaking of parity was studied. For parity-conserving collisions
of He with NO, it was observed that, for∆j e 4, transitions
with ∆j even are preferred, while for parity-breaking transitions
both studies find a preference for∆j odd transitions. The (2j′
+ 1) prefactor in eq 17 explains both propensities.

B. Oriented Molecules.The result in eq 13 is applied to
oriented molecules in this subsection. Under the influence of a
static electric orientation fieldE, the hexapole state-selected
wave function can be described as a linear combination of both
components of theΛ-doublet:7

The ( indicates orientation. For “+” orientation there is
preference forr to point parallel to the quantization axis (rvvẐ),
while for “-” orientation these vectors point antiparallel (rvVẐ).

The parametersR(E) and â(E) in eq 23 are the mixing
coefficients. If the orientation field cannot be assumed to be
infinitely high, mixing is not complete andR(E) > â(E) > 0,
with R2 + â2 ) 1. For an infinitely high orientation fieldE∞,

(44) Joswig, H.; Andresen, P.; Schinke, R.J. Chem. Phys.1986, 85, 1904.
(45) McCurdy, C. W.; Miller, W. H.J. Chem. Phys.1977, 67, 463.
(46) Drabbels, M.; Wodtke, A. M.; Yang, M.; Alexander, M. H.J. Phys. Chem.

A 1997, 101, 6463.

C(â)2 )
dσclass

dωa /∑j′,ε′

j′ + 1/2

4k2
|gj′-εε′/2(â)|2 (18)

∫0

π[ dσ
dω|∆j)n+1 - An

dσ
dω|∆j)n]2

dϑ (with n ) 1, 2, 3, ...) (22)

|j,m,Ωh ,E〉 ) R(E)|j,m,Ωh ,ε ) -1〉 ( â(E)
m
mj

|j,m,Ωh ,ε ) 1〉
(23)

dσclass

dωa
) ∫0

2π∫0

π
Ψj,ma,Ωh ,ε

/ Ψj,ma,Ωh ,ε

dσ(γa;â)

dωa
sin γa dγa dφa

(19)

dωa ) sin â dâ dæ (20)

dσclass

dωa
) 1

4π∫0

2π∫0

π dσ(γa;â)

dωa
sin γa dγa dφa (21)

dσ1/2,ε)-1f3/2,ε′)1

dω
≈ 2

3

dσ1/2,ε)-1f5/2,ε′)-1

dω
∝ |∫-1

1
g(γa;â)

P2(cosγa) d cos(γa)|2

dσ1/2,ε)-1f5/2,ε′)1

dω
≈ 3

4

dσ1/2,ε)-1f7/2,ε′)-1

dω
∝ |∫-1

1
g(γa;â)

P3(cosγa) d cos(γa)|2

dσ1/2,ε)-1f7/2,ε′)1

dω
≈ 4

5

dσ1/2,ε)-1f9/2,ε′)-1

dω
∝ |∫-1

1
g(γa;â)

P4(cosγa) d cos(γa)|2
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R(E) ) â(E) ) 1/x2, the wave function can then be written as
We first focus on this simpler case. Substitution of eq 14 into

24 now yields

For convenience, the orientation is for now taken relative to

the apse;m in eqs 24 and 25 is replaced byma:

Recall that orientation is defined such that for “+” orientation
the molecular axisr preferentially is parallel to the quantization
axis, while for “-” orientation it preferentially is antiparallel.
It should be noted that, in eq 27, the apse serves as quantization
axis Ẑ ) â. In NO, r points from the O atom toward the N
atom. In the apse frame, the “+” orientation relates to an R-NO
collision geometry and the “-” orientation to an R-ON
geometry. Transformation from the apse frame to the collision
frames which weakens the orientation effectss will be done
at a later stage. The orientation-dependent scattering amplitude
in the apse frame follows directly from the substitution of eq
13 in eq 10:

with

This equation turns out to be very helpful in explaining the

Figure 4. Ion images for He-NC collisions atEtr ) 514 cm-1. Marked images (*) are from P+Q or Q+R branch transitions. These images are more
sensitive to collision-induced rotational alignment and therefore show more asymmetry than those from single P and R branches.13 The parity pairs are
grouped and separated from the other images by white lines. The image forp′ ) -1, j′ ) 9.5 could not be obtained because of two overlapping spectral
lines. Images forp′ ) 1, j′ ) 6.5 andp′ ) 1, j′ ) 7.5 form a pair as well, although they are displayed on different rows.

Table 1. Parity Pairs for He-NO Collisionsa

(dσ/dω)|∆j)n+1/(dσ/dω)|∆j)n

n p′ QQT prefactor An (CC HIBRIDON)

1 1 3/2 1.50 1.54
2 -1 4/3 1.33 1.36
3 1 5/4 1.25 1.23
4 -1 6/5 1.20 1.30
5 1 7/6 1.17 1.16
6 -1 8/7 1.14 1.25
7 1 9/8 1.13 1.13
8 -1 10/9 1.11 1.07
9 1 11/10 1.10 1.32

10 -1 12/11 1.09 0.88
11 1 13/12 1.08 2.50

a A least-squares method was used to find ratios between differential
cross sections from quantum calculations. For the QQT the ratios between
the prefactors (j′ + 1/2) are provided. The ratio between the differential
cross sections for the QQT might be slightly different due to the dependence
of the phase shift on the final rotational state.

|j,m,Ωh ,E∞〉 ) 1
x2[|j,m,Ωh ,ε ) -1〉 ( m

mj
|j,m,Ωh ,ε ) 1〉] (24)

|j,m,Ωh ,E∞〉 ) |j,m,Ω ) m
mj

Ωh 〉 for “+” orientation
(25)

|j,m,Ωh ,E∞〉 ) -|j,m,Ω ) - m
mj

Ωh 〉 for “-” orientation

|j,ma,Ωh ,E∞〉 ) |j,ma,Ω )
ma

mj a
Ωh 〉 for “+” orientation

(26)

|j,ma,Ωh ,E∞〉 ) -|j,ma,Ω ) -
ma

mj a
Ωh 〉 for “-” orientation

(27)

g1/2,(fj′(â) ) (C(â)
1
2xj′ + 1/2 [gj′-1/2

(â) ( gj′+1/2
(â)] (28)

gn(â) ) ∫-1

1
gjfj′(γa;â)Pn(cosγa) d cos(γa)
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oscillations of the steric asymmetrySas a function of the final
rotational state.

To obtain a relationship between the relevant scattering
amplitudes, the recurrence relationship for Legendre polynomials
will be used:

For largen this reduces to

Around the center (x ≈ 0), Pn(x) dominates in eq 30. At the
edges (|x| ≈ 1), 2x Pn+1(x) dominates. Overall, both terms are
equally important asPn+1 is multiplied with 2x (-1 < x < 1).
Note that the amplitude of the oscillations ofPn+1(x) is only
slightly smaller than that ofPn(x). In Figure 5, some Legendre
polynomials are plotted to illustrate thatPn+2(x) ≈ -Pn(x)
aroundx ≈ 0.

Substitution of eq 30 into eq 28 gives

If the contributions around the waist of the molecules (cosγa

) 0) dominate the integral, the second term in eq 31 can be
neglected:gn(â) ≈ -gn+2(â). This will be the case when the
phase shiftη close to cosγa ) 0 is stationary:15 i.e.,η does not
depend on cosγa, which is expected for a prolate molecule like
NO. Under these conditions, it is easily shown why the
orientation preference switches sign when increasingj′ f j′ +
1. The ( orientation-dependent differential cross section for
excitation toj′ immediately follows from eq 28:

For j′ + 1, this results in

Substitution ofgn+2(â) ≈ -gn(â) f gj′+3/2(â) ≈ -gj′-1/2(â) yields
Comparing the right-hand sides of eqs 32 and 34, one notices

that they are nearly similar, except for the prefactor and the(
in the integral, which defines the orientation. The( is
exchanged for a-, which implies that the orientation preference
is reversed when increasingj′ f j′ + 1.

Incomplete mixing due to finite field strength can be included
in the model. Application of eq 23 as the initial wave function
leads to the orientation-dependent differential cross section:

The observed steric asymmetry will, in practice, be smaller than
what follows from integration of eq 35. Recall that orientation
has been, until now, defined along the apse: the productmaΩ
gives the orientation, wherema is the projection ofj on the
apse. In experiments, molecules are oriented along an electric
field that is usually fixed in the laboratory.

The projection of the total angular momentum on theẐ-axis
of the collision frame (parallel or antiparallel to the electric field
E) is defined bymΩ instead ofmaΩ, wherem is the projection
of j on theẐ-axis that points along the relative velocity. The
final result is a linear combination of “+” and “-” orientation
along the apse, weighted by the axis distribution of the selected
state. There will be a weakening of the steric asymmetry from
the pure apse-oriented state, but the conclusions drawn earlier
on the undulating behavior ofS remain intact. The laboratory
and apse frames are related by rotation42 through the polar angle
â:

In the scattering experiments with oriented NO molecules, the
initial state isj ) 1/2. The differential cross section follows as
where mΩ/mΩ ) 1 provides an R-ON configuration and

mΩ/ mΩ ) -1 gives an R-NO configuration in the collision
frame with Ẑ ) k̂. Note that 90° e â e 180°, which implies
that the first term with sin2(â/2) is the strongest one. The “+”
orientation in the collision frame is dominated by the “-”
orientation in the apse frame because the quantization axis in
the apse frame (Ẑ ) â) generally points opposite to that in the
collision frame (Ẑ ) k̂). As low final rotational states are usually
due to forward scattering (whereâ ≈ 90°), it becomes clear

Figure 5. Example of Legendre polynomials. Roughly speaking,Pn(cos
γa) ≈ -Pn+2(cosγa) in the (broad) region around cosγa ) 0.

Pn+1(x) ) 2n + 1
n + 1

x Pn(x) - n
n + 1

Pn-1(x) (29)

Pn+2(x) ≈ 2xPn+1(x) - Pn(x) (30)

gn(â) ≈ -gn+2(â) + 2∫-1

1
gjfj′(γa;â) cosγa

Pn+1(cosγa) d cos(γa) (31)

dσ1/2,(fj′

dω
)

j′ + 1/2

4k2
C(â)2 sin â

sinϑ|∂â
∂ϑ| |gj′-1/2

(â) ( gj′+1/2
(â)|2

(32)

dσ1/2,(fj′+1

dω
)

j′ + 3/2

4k2
C(â)2 sin â

sinϑ|∂â
∂ϑ| |gj′+1/2

(â) ( gj′+3/2
(â)|2

(33)

dσ1/2,(fj′+1

dω
≈ j′ + 3/2

4k2
C(â)2 sin â

sinϑ|∂â
∂ϑ| |gj′-1/2

(â) - gj′+1/2
(â)|2

(34)

dσ1/2,(,Efj′,ε′

dω
)

j′ + 1/2

4k2
C(â)2 sin â

sinϑ|∂â
∂ϑ|

|R(E)gj′+ε′/2(â) ( â(E)gj′-ε′/2(â)|2 (35)

|j,m,Ω〉 ) ∑
ma

dma,m
j (â)|j,ma,Ω〉 (36)

dσj)1/2,mΩ)(1/4,Efj′,ε′

dω
) sin2(â2)

dσj)1/2,maΩ)-1/4,Efj′,ε′

dω
+

cos2(â2)
dσj)1/2,maΩ)(1/4,Efj′,ε′

dω
(37)
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from eq 37 why the steric asymmetry has a small amplitude
for low final rotational states. In this case, the two orientations
in the apse frame (maΩ ) -1/4 and maΩ ) (1/4) are
approximately equally important for the two orientations in the
laboratory frame: cos2(â/2) ≈ sin2(â/2) if â ≈ 90°.

3. Hard-Shell Approximations

To be able to calculate differential and integral cross sections,
it is necessary to provide an explicit expression for the molecule-
fixed scattering amplitudegjfj′(γa;â) that contains the phase
shift. In this section, a hard-shell potential is applied to obtain
gjfj′(γa;â). The use of more sophisticated potential energy
surfacess soft and/or including attractions is not treated here.
At our collision energy, the He-NO and Ar-NO potential
energy surfaces are reasonably well described in a hard-shell
approximation. The aim of this work is to obtain a better insight
into the physics of inelastic scattering.

The convex hard shell for Ar colliding with NO is ap-
proximated using the 475 cm-1 equipotential surface from
Alexander’sVsum PESs.40 The shell for He-NO uses the 514
cm-1 equipotential surface fromVsumPESs calculated by Kłos.47

These equipotential surfaces are taken at the collision energies
from refs 4, 6, and 13. The hard-shell Ar-NO and He-NO
potentials are shown in Figure 6. As the amount of available
ab initio points on the equipotential is limited, an interpolation
has been used to establish the shell. The equipotential lines are
expressed in a Legendre expansion:

In this equation,γR is the polar angle between the position vector
of the shell and the molecular axis, whileRs(γR) gives the
distance from the origin of the potential to the hard shell (see
also Figure 7). The coefficients for this expansion have been

calculated using a least-squares optimization routine. For Ar-
NO, 9 points were supplied and used for the fit, while for He-
NO the fit was made using 37 points. Thecn coefficients
resulting from a fit to the expansion withnmax ) 6 are shown
in Table 2. As is shown in Figure 6, both the He-NO and the
Ar-NO ab initio equipotential surfaces are excellently described
using eq 38 with the fittedcn constants of Table 2.

The surface normaln̂ s that points perpendicularly to the hard
shells coincides with the kinematic apseâk. In the hard-shell
approximation, the scattering angle is determined only by the
incoming momentum, the surface normal, and the final rotational
state. This is demonstrated in Figure 8, where the incoming
momentumk is decomposed in components parallel (k|) and
perpendicular (k⊥) to the shell. The force that induces the
rotation points perpendicular to the shell. The component of
the momentum perpendicular to the hard shell is reversed and
partly transformed into rotation. The component along the hard
shell,k| is conserved:k′| ) k|.

The hard shells can be exploited to find the molecule-fixed
scattering amplitude. This amplitude for a specific rotational
excitation is written as

(47) Kłos, J.; Chalasinski, G.; Berry, M. T.; Bukowski, R.; Cybulski, S. M.J.
Chem. Phys.2000, 112, 2195.

Figure 6. Calculated equipotential line and interpolation for NO-Ar, Etr

) 475 cm-1,40 and NO-He PESs,Etr ) 514 cm-1.39 Coefficients from
Table 2 are used. Note thatγR ) 0 corresponds to the R-NO configuration,
while γR ) 180° corresponds to the R-ON configuration. The interpolation
for Ar-NO is based on 9 data points, and that for He-NO is based on 37
points.

Rs(γR) ) ∑
n)0

nmax

cnPn(cosγR) (38)

Figure 7. Schematic representation of a hard convex shell.

Table 2. Hard-Shell Legendre Polynomial Approximation
Coefficients As Used in Eq 38

cn (Bohr)

n for He−NO hard shell for Ar−NO hard shell

0 4.8637 5.8692
1 0.1983 0.1516
2 0.6908 0.6771
3 -0.0126 0.0142
4 -0.1497 -0.0999
5 -0.0012 0.0010
6 0.0263 0.0183

Figure 8. Assuming a hard shell, the scattering angle is defined by only
the incoming momentum, the surface normaln̂ (that coincides with the
kinematic apseâk) and the final rotational state.
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The j f j′ dependent phase shift is denoted byη(γa;â), and
gclass(γa;â) is a “classical” hard-shell scattering amplitude that
follows from the classical differential cross section in the apse
frame. For a spherical potential,gclassreduces to the square root
of the classical differential cross section (in the apse frame):

In this case,Rs is independent of the position on the hard shell
(γR ) γa). Integration of eq 10 for elastic scatterings dη(γa;â)/
dγa ) 0 or a constant as a function ofγa s now yields the
classical integral cross section:

Note that, in this spherical shell approximation, the current
density conservation parameterC(â) reduces to

To calculate the phase shiftη(γa;â) ≡ (k - k′)‚Rs, the hard
convex potential is used. The phase shift is defined as the path
length difference between a path via the hard shell and the
corresponding imaginary path through the origin of the potential
(center-of-mass), divided by the local de Broglie wavelength
and multiplied by 2π:

As k⊥ ) |k cosâ|, it is easily seen that for a glancing collision
the phase shift is zero, while for a head-on collision the absolute
value of the phase shift is at a maximum.

Equation 42 contains bothγR andγa. In Figure 7, it is shown
thats unlike for a spherical shells the angleγa between the
normal (apse)âk and the molecular axis is not the same as the
angleγR betweenRs(γR) and the molecular axis.

A unique relationship betweenγR and γa follows if one
transforms the hard-shellRs(γR) into cylinder coordinates (z,r):
As the apse is perpendicular to the hard shell, one gets

Please note thatz represents in this particular case a position
on the molecular axis.

The expression forgclass(γa;â) (eq 11) is no longer given by
eq 40. Areas on the molecular shell that have a large radius of
curvature will contribute more to the scattering amplitude than
those with a small radius of curvature. By using the two radii
of curvatureF1 andF2 that support the differential surface dS
as a function ofγa and substituting their product forRs

2 in eq
40, one obtains

The radii of curvatureF1 andF2 are calculated as

dCf/dγa is theγa derivative of the arc length of the hard shell
in a plane through the molecular axis. The second radius of
curvature,F2, is given by the distance from the molecular axis
to the hard shell along the surface normal. Note thatgclass(γa;â)
is the square root of the molecule-fixed differential cross section
dσ/dωa with respect to the apse. With these results, the treatment
can be applied to provide quantitative results. This is the subject
of the next section.

4. Quantitative Results and Discussion

The general QQT of section 2 provides already some
qualitative conclusions. In section 2.1, it was shown that the
differential cross sections for collisions with fully state-selected
(nonoriented) molecules show parity pairs and propensity rules.
In section 2.2, it is argued why the steric asymmetry exhibits
an oscillatory behavior as a function of the final rotational state.
The calculation of the molecule-fixed scattering amplitude
obtained from the hard-shell approximation makes it possible
to obtain quantitative results. In this section, the hard-shell QQT
will be applied to He-NO scattering to result in calculated
angle-dependent differential cross sections for nonoriented
molecules and steric asymmetries for collisions of He and Ar
atoms with oriented molecules.

Upon substitution of eqs 42 and 45 into eqs 35 and 37, and
subsequent evaluation of the integral, the differential cross
section is obtained. Integration of the differential cross section
leads to a cross section that, using eq 1, provides the steric
asymmetryS. S is plotted in Figures 9 and 10 for two cases:
He-NO with ε′ ) 1 and Ar-NO with ε′ ) -1. Mixing is not
complete, so slightly more NO withε ) -1 is present than
that withε ) 1 before collisions. Mixing coefficients were taken
from ref 6 for He-NO and from ref 4 for Ar-NO. The QQT
results forScorrespond remarkably well to the measured steric
asymmetries and coupled channel calculations. The experimental
results are not shown in Figures 9 and 10 for readability, but
(except for the unresolved sign error7,11) they correspond well
to the exact (CC) values ofSthat are in the plot (see also Figure
1). The amplitude ofS for scattering to theε ) -1 state is
smaller than that for scattering toε ) 1. CC calculations and
experimental results show the same behavior.

In eqs 32 and 34, it was shown thatS shows an undulating
behavior as a function of the final rotational quantum statej′.
These equations, however, give no information about the sign
of the oscillation. To get information on the sign of the steric
asymmetry, the phase shift has to be included. In Figure 11,
the phase shift (He-NO) for several final rotational statesj′ is
plotted (atâ ) 180°), as are some corresponding Legendre
polynomials. The dashed line with labelηmax indicates the
position where the phase shift is maximum (least negative) and

gclass(γa;â) ) x F1F2|cosâ| (45)

F1 )
dCf

dγa
(46)

F2 )
Rs(γR) sin(γR)

sin(γa)
(47)

gjfj′(γa;â) ) gclass(γa;â) eiη(γa;â) (39)

gclass(â) ) kRsx|cosâ| (40)

1

k2 ∫-1

0 ∫0

2π[kRsx |cosâ| ]2 dR d cosâ ) πRs
2

C(â)2 ) Rs
2|cosâ|/∑j′,ε′

j′ + 1/2

4k2
|gj′-εε′/2(â)|2 (41)

η(γa;â) ) -Rs(γR) cos(γa - γR)(k ′⊥ + k⊥) (42)

z ) Rs(γR) cos(γR) and r ) Rs(γR) sin(γR)
(43)

γa ) -arctan
dr
dz

(44)
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stationary. This position dominates within the integral, which
is enhanced by the fact thatgclass(γa;â) has a maximum at this
position (the waist of the molecule) as well. Except at the
stationary phase point, the molecule-fixed scattering amplitude
will show oscillations around 0 where the phase is not stationary,
which yields a small contribution in this area. On the other hand,
if there is a too large area of stationary phase compared to the
oscillations of the Legendre polynomials, the contribution in
that area will also be close to 0. This is the reason that the cross
section for excitation to high rotational states vanishes for
glancing collisions with small phase shifts.

To illustrate how the stationary phase defines the sign of the
steric asymmetry, scattering intoj′ ) 6.5 is discussed here in

some detail. Recall that, in the integral for the scattering
amplitude, a sum of two integrals of Legendre polynomials is
found (eq 28):

with

The “(” defines orientation, whereas the “+” indicates an
R-NO collision and the “-” an R-ON collision. Recall that
the apse serves as the quantization axis here. Scattering will be
dominated by the value of the Legendre polynomial around the
phase shift maximumγmax (whereη(γa;â) ) ηmax). For now, a
spherical hard shell is assumed, sogclass(γa;â) is independent
of γa. Roughly speaking, forj′ ) 6.5 one has

For an N-end collision,g6 + g7 ) -0.09 eiηmax appears in the
integral, while for an O-end collision one hasg6 - g7 )
-0.45 eiηmax. It is easily seen that the latter will yield a larger
contribution to the differential cross section for a transition to
j′ ) 6.5:

According to eq 1, this will give a negative steric asymmetry,
which is also seen in Figure 9. The steric asymmetry will be
slightly weakened, as explained by eq 36. The values forS in
Figures 9 and 10 are not calculated using the stationary phase
argument, but the whole integral in eq 32 is evaluated.

Besides integral cross sections and thus steric asymmetries,
the QQT provides differential cross sections. Although until now
no differential cross sections have been measured for collisions
of oriented NO, they are available for collisions of nonoriented
NO with He. Westley et al.49 performed ion imaging measure-
ments using state selection of the NO with adiabatic cooling
for state selection (both components of theΛ-doublet present).
Recently, Gijsbertsen et al. performed ion imaging experiments
with hexapole state-selected NO, in which only the upper
component of theΛ-doublet (ε ) -1) is present.13 Some (raw)
ion images13 are shown in Figure 4. The intensity on an outer
ring of these images roughly indicates the differential cross sec-
tion. In Figure 12, some differential cross sections from the QQT
are compared to (extracted) experimental data and data from
close-coupling calculations. The extraction method is explained
in ref 13. The QQT results and experimental data are normalized
to the integral cross sections available from HIBRIDON results
to enable a good comparison of the angular dependence. There
is a difference between the integral cross sections of the

(48) Aoiz, F. J.; Verdasco, J. E.; Herrero, V. J.; Sa´ez Rábanos, V.; Alexander,
M. H. J. Chem. Phys.2003, 119, 5860.

(49) Westley, M. S.; Lorenz, K. T.; Chandler, D. W.; Houston, P. L.J. Chem.
Phys.2001, 2, 473.

Figure 9. QQT results for the steric asymmetry ratio of He-NO collisions
(Ω′ ) 1/2), compared to results of CC (HIBRIDON) calculations.6 Mixing
coefficients used areR(E) ) 0.883 andâ(E) ) 0.470,6 and the collision
energy is approximately 510 cm-1. The upper panel denotesε′ ) -1, while
the lower shows results forε′ ) 1. In the case of perfect orientation (mixing),
both panels should show the same result, as both components of the
Λ-doublet are equally populated before the collision.

Figure 10. QQT results for the steric asymmetry ratio of Ar-NO collisions
(Ω′ ) 1/2, ε′ ) 1), compared to results of CC (HIBRIDON) calculations.5,8

Mixing coefficients used areR(E) ) 0.832 andâ(E) ) 0.555,4 and the
collision energy is approximately 510 cm-1. The upper panel denotesε′ )
-1, while the lower shows results forε′ ) 1. The differences between the
QQT results and the CC results for∆j e 3 likely originate from attractive
long-range interactions that are neglected in the hard-shell QQT calculations.
Aoiz et al.48 showed that the attractive part of the potential only has
significant influence for∆j e 3.

dσ1/2,(fj′

dω
)

j′ + 1/2

4k2
C(â)2 sin â

sinϑ|∂â
∂ϑ| |gj′-1/2

(â) ( gj′+1/2
(â)|2

gn ) ∫-1

1
gclass(γa;â) eiη(γa;â)Pn(cosγa) d cos(γa).

g6 ∼ eiηmaxP6(cosγmax) ) -0.27 eiηmax

g7 ∼ eiηmaxP7(cosγmax) ) 0.18 eiηmax (48)

dσ1/2,- fj′)6.5

dω
>

dσ1/2,+ fj′)6.5

dω
(49)
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HIBRIDON calculations and QQT calculations; normalization
factors are provided in the caption of Figure 12. This is easily
explained by the use of a hard shell. To transfer a lot of kinetic

energy into rotation, the potential is more deeply penetrated,
causing underestimation of the cross section for low rotational
states. Scattering intoΩh ′ ) 3/2 was not taken into account in

Figure 11. Combination of phase shiftη (top panel) and the Legendre polynomials (lower panel) fix the sign of the steric asymmetryS. The phase shift
drawn here is for collisions withâ ) 180° (incoming momentum lies along the surface normal). The dashed line with labelηmax indicates the position where
the phase shift is maximum (least negative). At this point, the phase shift is stationary (the derivative dη/dγa ) 0), which makes this position dominant
within the integral, which is enhanced by the fact thatgclass(γa;â) has a maximum at this position. Due to the fact thatk andk′ are larger for Ar-NO than
for He-NO, the phase function will be steeper for the Ar-NO system (see eq 42).

Figure 12. Several He-NO differential cross sections for parity-conserving transitions (p ) p′ ) -1). The parity pairs (see also Figure 4) are easily seen
in this figure. Both the experimental and QQT results are normalized on the integral cross section from close-coupling HIBRIDON results. The hard-shell
approximation causes an underestimation of the differential cross section for low rotational states. For these differential cross sections, the normalization
factors are (from low to high rotational states) 1.51, 1.58, 1.15, 1.18, 0.84, and 0.91.
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the QQT, which should result in too large a differential cross
section overall for scattering into theΩh ′ ) 1/2 states.

5. Conclusions

The quasi-quantum-mechanical methodology successfully
explains the steric asymmetry and its alternation based on
interfering scattering trajectories from a single, purely repulsive
potential energy surface. It is thereby demonstrated that the steric
asymmetry reflects phase differences between scattering from
the two ends of the NO molecule. This phase shift function
defines the sign of the steric asymmetry, while the oscillation
of Siff follows from the sum ofs or difference betweens the
Legendre polynomials in the integral in eq 28. The straightfor-
ward quasi-quantum-mechanical picture provides the first physi-
cally simple, yet rigorous, explanation for the behavior of the
steric asymmetry, and it can readily be extended to provide
predictions of steric effects in other inelastic scattering systems
or for reactive collisions. It is shown that the effect of the
attractive part of the potential is small and thus that interference
between propagation on theA′ andA′′ surfaces is not responsible
for the oscillations.

The differential cross sections calculated for nonoriented NO
molecules colliding with He atoms agree reasonably well with
experimental results and coupled channel calculations. The QQT
predicts a parity propensity rule that is also seen in experimental
results and results from full quantum-mechanical calculations.
This rule was not recognized as such until now. To improve
the qualitative results of the QQT, the potential can be made
softer. This will allow the potential to be penetrated more deeply

in the case of head-on collisions than in the case of glancing
collisions. Low rotational states will then show a larger cross
section compared to the current results.
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